Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anna Kromm and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany

Correspondence e-mail:
william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.036$
$w R$ factor $=0.106$
Data-to-parameter ratio $=23.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis[tris(ethylenediamine)manganese(II)] di- μ-telluridobis[ditelluridostannate(IV)] (monoclinic modification)

The title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$, contains $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]^{2+}$ (en is ethylenediamine) complex cations and crystallographically centrosymmetric $\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]^{4-}$ anions in its monoclinic crystal structure. The five-membered chelate rings of symmetry-related cations exhibit either $\lambda \lambda \lambda$ or $\delta \delta \delta$ conformations. Two SnTe_{4} tetrahedra edge-share to afford the hexatelluridodistannate(IV) anions, whose terminal Sn Te bonds are significantly shorter than the bridging $\mathrm{Sn}-\mathrm{Te}$ bonds.

Comment

Tetrahedral $\left[\operatorname{Sn} E_{4}\right]^{4-}(E=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ anions exhibit a characteristic tendency to condense in polar solvents to generate corner- or edge-bridged oligomeric or polymeric chalcogenidostannates(IV) (Sheldrick \& Wachhold, 1997, 1998; Sheldrick, 2000). Ditetrahedral anions $\left[\mathrm{Sn}_{2} E_{6}\right]^{4-}$ composed of two edge-sharing tetrahedra are particularly common and have been structurally characterized for $E=\mathrm{Te}$ in the salts $\mathrm{Li}_{4}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right] \cdot 8 \mathrm{en}$ (Dehnen et al., 2002), $\mathrm{K}_{4}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$ (Evenson \& Dorhout, 2000), $\mathrm{K}_{2}[\mathrm{~K}(2,2,2 \text {-crypt })]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$ (Campbell et al., 1996), $\mathrm{K}_{2}[\mathrm{~K}(2,2,2 \text {-crypt })]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right] \cdot \mathrm{en}$ (Fässler \& Schütz, 1997), $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$ (Huffman et al., 1984), $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$ (Ansari et al., 1993), $\left[M(\mathrm{en})_{3}\right]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right](M=\mathrm{Mn}, \mathrm{Zn})(\mathrm{Li}$ et al., 1998), $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$ •en (Shreeve-Keyer et al., 1997) and (enH) $)_{4} \mathrm{Sn}_{2} \mathrm{Te}_{6} \cdot$ en (Dehnen \& Zimmermann, 2002), where 2,2,2-crypt is $4,7,13,16,21,24$-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane and en is ethylenediamine. Interestingly, the telluridostannates(IV) $\left[M(\mathrm{en})_{3}\right]_{2} \mathrm{Sn}_{2} \mathrm{Te}_{6}$ are not isostructural, but crystallize in the space groups $\operatorname{Pbca}(M=\mathrm{Mn})$ and $P 2_{1} / n(M=$ Zn). It was argued by the authors (Li et al., 1998) that the packing differences are due to the different cation conformations, with $\delta \delta \delta / \lambda \lambda \lambda$ being observed for $M=\mathrm{Mn}$ and $\delta \delta \lambda / \lambda \lambda \delta$ for $M=\mathrm{Zn}$.

(I)

We recently prepared $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$, (I), as a precursor for the construction of quaternary chalcogenidometalates and discovered that the compound crystallizes in a new modification (monoclinic, $P 2_{1} / n$) in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a mineralizer. Somewhat surprisingly, this modification is not isostructural with the analogous zinc compound $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$, although both adopt the same monoclinic space group. The cell constants are $a=9.048$ (2) \AA, $b=$

Received 29 September 2005
Accepted 4 October 2005
Online 8 October 2005
$22.300(6) \AA, c=9.360(3) \AA, \beta=103.19(2)^{\circ}$ and $V=$ 1838.7 (9) \AA^{3} for the latter telluridostannate(IV). It was, therefore, of interest to determine whether the cation conformation is the same in the Mn compound. The monoclinic modification of (I) contains crystallographically centrosymmetric $\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]^{4-}$ anions, whose more polar terminal $\mathrm{Sn}-\mathrm{Te}$ distances of 2.6965 (8) and 2.7018 (8) \AA are significantly shorter than the bridging $\mathrm{Sn}-\mathrm{Te}$ distances of 2.8022 (8) and 2.8102 (9) A. Although slightly longer than the analogous distances in the orthorhombic modification of $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$ [terminal $(t) 2.684$ (1) and 2.681 (1) \AA; bridging (b) 2.782 (1) and 2.780 (1) \AA], these values do lie well within the typical ranges previously observed for other $\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]^{4-}$ anions with either alkylammonium or encapsulated alkali metal cations $\left[\mathrm{Sn}-\mathrm{Te}_{\mathrm{t}}=2.664-2.704 \AA\right.$ and $\mathrm{Sn}-\mathrm{Te}_{\mathrm{b}}=$ $2.780-2.834 \AA$). The $\mathrm{Sn}-E$ bond distances in anions $\left[\mathrm{Sn}_{2} E_{6}\right]^{4-}$ are influenced by either the strength of $E \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonding to organic counter-cations (Dehnen \& Zimmermann, 2002) or the degree of covalency in the $E \cdots A$ interactions to alkali metal counter-cations (Sheldrick \& Braunbeck, 1993). In the monoclinic modification of $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$, the terminal Te 1 and Te 3 atoms both participate in six weak $\mathrm{Te} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bridges, each in the distance and angle ranges $3.764(7)-4.115(8) \AA \quad(\mathrm{Te} \cdots \mathrm{N})$ and $137-173^{\circ}$ $(\mathrm{Te} \cdots \mathrm{H}-\mathrm{N})$. By contrast, the bridging atom Te 2 exhibits only two $\mathrm{Te} \cdots \mathrm{H}-\mathrm{N}$ contacts to an en ligand in the above distance range $[\mathrm{Te} 2 \cdots \mathrm{~N} 9=3.959(7) \AA$] , whose small angles of only 107° for both H9A and H9B rule out significant hydrogen bonding.

As depicted in Fig. 1, the $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]^{2+}$ cation once again exhibits the $\lambda \lambda \lambda / \delta \delta \delta$ conformation of the orthorhombic modification. The number, strength and relative orientation of the $\mathrm{Te} \cdots \mathrm{H}-\mathrm{N}$ contacts between the anions and cations must, therefore, be responsible for the adoption of a particular crystal system and not, as suggested by Li et al. (1998), the conformation of the complex cation per se. A total of ten rather than 12 weak $\mathrm{Te} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bridges in the somewhat wider range $3.688-4.102 \AA$ are observed for the terminal Te atoms in the orthorhombic modification.

Experimental

Sn $(127.0 \mathrm{mg}, \quad 1.07 \mathrm{mmol}), \mathrm{Te}(325.4 \mathrm{mg}, \quad 2.55 \mathrm{mmol}) \quad$ and $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(253.6 \mathrm{mg}, 1.04 \mathrm{mmol})$ were heated to 463 K in a 1:1 mixture (1 ml) of $\mathrm{CH}_{3} \mathrm{OH}$ and ethylenediamine in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(391.0 \mathrm{mg}, 1.2 \mathrm{mmol})$. After 30 h , the solution was cooled to 293 K at a rate of $2 \mathrm{~K} \mathrm{~h}^{-1}$ to afford deep-red crystals of $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]\left[\mathrm{Sn}_{2} \mathrm{Te}_{6}\right]$, (I) (monoclinic modification) in 75% yield.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]_{2}\left[\mathrm{Sn}_{2} \mathrm{~T}_{6}\right]} \\
& M_{r}=1473.44 \\
& \text { Monoclinic, }, P 2_{1} / n \\
& a=9.1006(18) \AA \\
& b=18.019(4) \AA \\
& c=12.701(3) \AA \\
& \beta=95.23(3))^{\circ} \\
& V=2074.1(7) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Siemens $P 4$ four-circle
\quad diffractometer
ω scans
Absorption correction: ψ scan
$\quad(X P R E P$ in $S H E L X T L ;$
\quad Sheldrick, 1995)
$T_{\min }=0.067, T_{\max }=0.169$
3807 measured reflections
3639 independent reflections

3055 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 21$
$l=0 \rightarrow 15$
3 standard reflections every 100 reflections intensity decay: 1%

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.106$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0494 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.38$
3639 reflections
154 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.95 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.03$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Sn}-\mathrm{Te} 1$	$2.6965(8)$	$\mathrm{Mn}-\mathrm{N} 8$	$2.270(7)$
$\mathrm{Sn}-\mathrm{Te} 3$	$2.7018(8)$	$\mathrm{Mn}-\mathrm{N} 1$	$2.283(8)$
$\mathrm{Sn}-\mathrm{Te} 2^{\mathrm{i}}$	$2.8022(8)$	$\mathrm{Mn}-\mathrm{N} 5$	$2.287(7)$
$\mathrm{Sn}-\mathrm{Te} 2$	$2.8102(9)$	$\mathrm{Mn}-\mathrm{N} 4$	$2.291(7)$
$\mathrm{Te} 2-\mathrm{Sn}$		$2.301(7)$	
$\mathrm{Mn}-\mathrm{N} 9$	$2.8022(8)$	$\mathrm{Mn}-\mathrm{N} 12$	
	$2.266(7)$		
$\mathrm{Te} 1-\mathrm{Sn}-\mathrm{Te} 3$			$77.3(3)$
$\mathrm{Te} 1-\mathrm{Sn}-\mathrm{Te} 2^{\mathrm{i}}$	$111.17(2)$	$\mathrm{N} 8-\mathrm{Mn}-\mathrm{N} 5$	$168.5(3)$
$\mathrm{Te} 3-\mathrm{Sn}-\mathrm{Te} 2^{\mathrm{i}}$	$114.38(3)$	$\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 5$	$164.1(3)$
$\mathrm{Te} 1-\mathrm{Sn}-\mathrm{Te} 2$	$111.04(3)$	$\mathrm{N} 9-\mathrm{Mn}-\mathrm{N} 4$	$96.0(3)$
$\mathrm{Te} 3-\mathrm{Sn}-\mathrm{Te} 2$	$111.36(3)$	$\mathrm{N} 8-\mathrm{Mn}-\mathrm{N} 4$	$77.1(3)$
$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Te} 2$	$113.23(3)$	$\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 4$	$98.3(3)$
$\mathrm{Sn}-\mathrm{Te} 2-\mathrm{Sn}$	$94.78(2)$	$\mathrm{N} 5-\mathrm{Mn}-\mathrm{N} 4$	$77.0(2)$
$\mathrm{N} 9-\mathrm{Mn}-\mathrm{N} 8$	$85.22(2)$	$\mathrm{N} 9-\mathrm{Mn}-\mathrm{N} 12$	$167.3(3)$
$\mathrm{N} 9-\mathrm{Mn}-\mathrm{N} 1$	$97.5(3)$	$\mathrm{N} 8-\mathrm{Mn}-\mathrm{N} 12$	$99.2(3)$
$\mathrm{N} 8-\mathrm{Mn}-\mathrm{N} 1$	$93.7(3)$	$\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 12$	$91.4(3)$
$\mathrm{N} 9-\mathrm{Mn}-\mathrm{N} 5$	$92.5(3)$	$\mathrm{N} 5-\mathrm{Mn}-\mathrm{N} 12$	$91.5(3)$
	$93.0(3)$	$\mathrm{N} 4-\mathrm{Mn}-\mathrm{N} 12$	
$\mathrm{Te} 1-\mathrm{Sn}-\mathrm{Te} 2-\mathrm{Sn}^{\mathrm{i}}$	$-118.52(3)$	$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{Sn}-\mathrm{Te} 2-\mathrm{Sn}^{\mathrm{i}}$	0.0
$\mathrm{Te} 3-\mathrm{Sn}-\mathrm{Te} 2-\mathrm{Sn}^{\mathrm{i}}$	$115.34(3)$		

Symmetry code: (i) $-x+1,-y,-z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$	
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Te} 1^{\text {ii }}$	0.90	3.34	$4.039(8)$	137	
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Te} 3^{\text {iii }}$	0.90	3.31	$4.115(8)$	151	
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{Te} 3$	0.90	3.04	$3.931(7)$	173	
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{Te} 1^{\text {iv }}$	0.90	3.05	$3.851(8)$	149	
$\mathrm{~N} 5-\mathrm{H} 5 A \cdots \mathrm{Te} 1^{\mathrm{v}}$	0.90	2.99	$3.880(7)$	173	
$\mathrm{~N} 5-\mathrm{H} 5 B \cdots \mathrm{Te} 1^{\text {iv }}$	0.90	2.95	$3.798(7)$	157	
$\mathrm{~N} 8-\mathrm{H} 8 A \cdots \mathrm{Te} 3$	0.90	3.19	$3.994(8)$	150	
$\mathrm{~N} 8-\mathrm{H} 8 B \cdots \mathrm{Te} 3^{\mathrm{iii}}$	0.90	3.05	$3.895(7)$	158	
$\mathrm{~N} 9-\mathrm{H} 9 A \cdots \mathrm{Te} 1^{\mathrm{v}}$	0.90	3.19	$4.052(8)$	161	
$\mathrm{~N} 9-\mathrm{H} 9 B \cdots \mathrm{Te} 3^{\text {iii }}$	0.90	3.01	$3.849(7)$	157	
$\mathrm{~N} 12-\mathrm{H} 12 A \cdots \mathrm{Te} 3^{\text {ii }}$	0.90	2.88	$3.764(7)$	166	
$\mathrm{~N} 12-\mathrm{H} 12 B \cdots \mathrm{Te} 1^{\text {iv }}$	0.90	2.99	$3.816(7)$	154	
$\mathrm{~N} 9-\mathrm{H} 9 A \cdots \mathrm{Te} 2^{\mathrm{v}}$	0.90	3.60	$3.959(7)$	107	
$\mathrm{~N} 9-\mathrm{H} 9 B \cdots \mathrm{Te} 2^{\mathrm{v}}$	0.90	3.61	$3.959(7)$	107	
Symmetry codes: (ii)	$x+1, y, z ;$ (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ;$ (iv) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} ;(\mathrm{v})$				
$-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.					

All H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{C})$. The highest peak in the final difference synthesis is located $1.09 \AA$ from Te3 and the deepest hole $0.91 \AA$ from Te3.

Figure 1
The tris(ethylenediamine)manganese(II) cation and centrosymmetric hexatelluridostannate(IV) anion of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. The symmetry code for the unlabelled atoms is $(1-x,-y,-z)$.

Data collection: $R 3 m / V$ (Siemens, 1989); cell refinement: $R 3 m / V$; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXL97.

References

Ansari, M. A., Bollinger, J. C. \& Ibers, J. A. (1993). Inorg. Chem. 32, 231-232. Campbell, J., Devereux, L. A., Gerken, M., Mercier, H. P. A., Pirani, A. M. \& Schrobilgen, G. J. (1996). Inorg. Chem. 35, 2945-2962.

Figure 2
The packing of the cations and anions of (I), shown in projection perpendicular to the $b c$ plane with the following colouring scheme: Sn orange (cross-hatched), Mn pink (hatched circle), Te green (hatched circle), N blue (dotted circle) and C white (semi-hatched circle). H atoms have been omitted.

Dehnen, S. \& Zimmermann, C. (2002). Z. Anorg. Allg. Chem. 628, 2463-2469.
Dehnen, S., Zimmermann, C. \& Anson, C. E. (2002). Z. Anorg. Allg. Chem. 628, 279-288.
Evenson, C. R. IV \& Dorhout, P. K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 318.
Fässler, T. F. \& Schütz, U. (1997). J. Organomet. Chem. 541, 269-276.
Huffman, J. C., Haushalter, J. P., Umarji, A. M., Shenoy, G. K. \& Haushalter, R. C. (1984). Inorg. Chem. 23, 2312-2315.

Li, J., Chen, Z., Emge, T. J., Yuen, T. \& Proserpio, D. M. (1998). Inorg. Chim. Acta, 273, 310-315.
Sheldrick, G. M. (1995). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, W. S. (2000). J. Chem. Soc. Dalton Trans. pp. 3041-3052.
Sheldrick, W. S. \& Braunbeck, H.-G. (1993). Z. Anorg. Allg. Chem. 619, 13001306.

Sheldrick, W. S. \& Wachhold, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 206224.

Sheldrick, W. S. \& Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-321.
Shreeve-Keyer, J. L., Warren, C. J., Dhingra, S. S. \& Haushalter, R. C. (1997). Polyhedron, 16, 1193-1199.
Siemens (1989). R3m/V User's Guide. Version 3.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

